Convex Relaxation of Mixture Regression with Efficient Algorithms
نویسندگان
چکیده
We develop a convex relaxation of maximum a posteriori estimation of a mixture of regression models. Although our relaxation involves a semidefinite matrix variable, we reformulate the problem to eliminate the need for general semidefinite programming. In particular, we provide two reformulations that admit fast algorithms. The first is a max-min spectral reformulation exploiting quasi-Newton descent. The second is a min-min reformulation consisting of fast alternating steps of closed-form updates. We evaluate the methods against Expectation-Maximization in a real problem of motion segmentation from video data.
منابع مشابه
SDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملConvex Relaxation Regression: Black-Box Optimization of Smooth Functions by Learning Their Convex Envelopes
Finding efficient and provable methods to solve non-convex optimization problems is an outstanding challenge in machine learning. A popular approach used to tackle non-convex problems is to use convex relaxation techniques to find a convex surrogate for the problem. Unfortunately, convex relaxations typically must be found on a problemby-problem basis. Thus, providing a general-purpose strategy...
متن کاملAdaptive Estimation of Regression Parameters for the Gaussian Scale Mixture Model
A proposal of van der Vaart (1996) for an adaptive estimator of a location parameter from a family of normal scale mixtures is explored. Recent developments in convex optimization have dramatically improved the computational feasibility of the Kiefer and Wolfowitz (1956) nonparametric maximum likelihood estimator for general mixture models and yield an effective strategy for estimating the effi...
متن کاملImproved Moves for Truncated Convex Models
We consider the problem of obtaining the approximate maximum a posteriori estimate of a discrete random field characterized by pairwise potentials that form a truncated convex model. For this problem, we propose an improved st-MINCUT based move making algorithm. Unlike previous move making approaches, which either provide a loose bound or no bound on the quality of the solution (in terms of the...
متن کاملEfficient Algorithms for Non-convex Isotonic Regression through Submodular Optimization
We consider the minimization of submodular functions subject to ordering constraints. We show that this optimization problem can be cast as a convex optimization problem on a space of uni-dimensional measures, with ordering constraints corresponding to first-order stochastic dominance. We propose new discretization schemes that lead to simple and efficient algorithms based on zero-th, first, or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009